
DATE: 4/01/97

CONTROLLING OFFICE FOR THIS DOCUMENT IS:
DIRECTOR, Army High Performance Computing
Research Center (AHPCRC)
Army Research Laboratory
Aberdeen, MD

POC: Director (Tayn E. Tezduyar)

DISTRIBUTION STATEMENT A: Public release

Söi r4£#5>

»»*,«

Scalable Parallel Algorithms for Sparse
Linear Systems

Wint 95

by Anshul Gupta (AHPCRC), George Karypis
(AHPCRC)

(AHPCRC) and Vipin Kumar

Large sparse linear systems occur in many scientific and
engineering applications encountered in military and civilian
domains. Such systems are typically solved using either
iterative or direct methods. We are developing parallel
formulations of computationally intensive algorithms that underly
these methods.

Direct methods for solving sparse linear systems are important
because of their generality and robustness. For linear systems
arising in certain applications, such as linear programming and
some structural engineering applications, they are the only
feasible methods. Although highly parallel formulations of dense
matrix factorization are well known, it has been a challenge to
implement efficient sparse linear system solvers using direct
methods, even on moderately parallel computers.

We have recently achieved a breakthrough in
parallel sparse Cholesky factorization algo
substantially improves the state of the art
solution of sparse linear systems-both in t
and overall performance. Experiments have
algorithm can easily speedup Cholesky facto
of at least a few hundred up to 1024 proces
levels of performance that were unheard of
this problem until very recently.

developing a highly
rithm that
in parallel direct

erms of scalability
shown that this
rization by a factor
sors, and achieve
and unimaginable for

Matrix Name Order NonZeros Description
BCSSTK30(B30)

BRACK2 (BRCK)
CANT (CANT)
COPTER2 (COPT)
CUBE35 (C35)
CYLINDER93(CY93
4ELT (4ELT)
INPROl (INPR)
MAROS-R7 (MR7)
NUG15 (NG15)
ROTOR (ROTR)
SHELL93 (SHEL)
TROLL (TROLL)

28294 1007284
35588 572914

44609 985046

62631 366559
54195 1960797
55476 352238
42875 124950
)45594 1786726
15606 45878
46949 1117809
3136 330472
6330 186075

99617 662431
181200 2313765
213453 5885829

Off-shore generator platform
Stiffness matrix of an
automobile component
Stiffness matrix of an
automobile chassis
Finite element mesh
Finite element mesh (3D)
Helicopter rotor mesh
35 ' 35 ' 35 3D mesh
Finite element mesh (3D)
NASA Airfoil (2D)
Finite element mesh (3D)
Linear programming problem
Quadratic assignment problem
Finite element mesh (3D)
Finite element mesh (3D)
Finite element mesh (3D)

ur>

WAVE (WAVE) 156317 1059331 Finite element mesh (3D)

Table 1. Description of test matrices used in our
experiments.

It is a well known fact that dense matrix factorization scales
well and can be implemented efficiently on parallel computers.
We have shown that our parallel sparse factorization algorithm is
asymptotically as scalable as the best dense matrix factorization
algorithms on a variety of parallel architectures for a wide
class of problems that include two and three-dimensional finite
element problems. This algorithm incurs less communication
overhead than any previously known parallel formulation of sparse
matrix factorization, and therefore, is suitable for workstation
clusters that tend to be connected via relatively low-bandwidth
and high-latency channels relative to the traditional MPP
platforms. We have successfully implemented this algorithm for
Cholesky factorization on a variety of parallel computers, such
as nCUBE2, CM-5, IBM SP-1 and SP-2, and the Cray T3D. The
implementation on the T3D delivers up to 20 GFlops on 1024
processors for medium-size structural engineering and linear
programming problems. Although our current implementations work
for Cholesky factorization, the algorithm can be adapted for
solving sparse linear least squares problems and for Gaussian
elimination of diagonally dominant matrices that are almost
symmetric in structure. Figure 1 shows the performance of our
scheme on the matrices given in Table 1.

Performance Ach eved tv Our Parallel Choleksy Factonzation Algorithm

MAROS-R7 -+—
- BCSSTK30 "•— .,-*'

BCSSTK31 -•»-- ,*>*
BCSSTK32 -*- ^.x"

' COPTER2 -*-■• r*-"' ^
CUBE35 -«- -"""" J-'

J^"
NUG15-*-- -**■" **-"f'r*ml^** -

- /"""" ^^^ -

^^

r, i i i i

3234 12S 256 512
.Piocessois

1024

Figure 1. The performance of the parallel sparse multifrontal
algorithm for various problems on the Cray T3D.

Fast and accurate graph partitioning algorithms are needed for
the solution of sparse system of linear equations Ax = b on a
parallel computer. In the case of direct solvers, a graph
partitioning algorithm can be used to reorder the matrix so that
the amount of fill is minimized, and the concurrency that can be

exploited during parallel factorization is maximized. In the
case of parallel iterative solvers, the graph corresponding to
matrix A needs to be partitioned into p parts so that the
number of edges with vertices on different partitions is
minimized. Many heuristic algorithms are known for finding good
partitions of a graph. Algorithms that provide good partitions of
the graph (e.g., spectral methods) tend to be very slow,
especially for large graphs. Faster algorithms tend to
compromise on the quality of the partition. In the context
of direct methods, good sequential partitioning methods can take
even more time than the factorization step running on a parallel
computer, and cheaper methods result in a high degree of fill in
the matrix, causing overall factorization time to jump up by a
large factor.

Our Murtilevelvs Multilevel Spectral Bisection (MSB)

64 parts i^roi -J2Ö parts 255 parts MSB (baseline)

D.2 I

D.1

>>•••>* /••• ///^ # f f 4? " S jr *~
.^_

* f #
&

$■

Figure 2. The size of the edge-cut of multilevel graph
partitioning relative to spectral bisection. Bars below 1
indicate that the multilevel graph partitioning scheme produces
better partitions.

We have recently developed a multilevel graph partitioning scheme
that consistently outperforms the spectral partitioning schemes
in terms of cut size and is substantially faster. We also used
our graph partitioning scheme to compute fill reducing orderings
for sparse matrices. Surprisingly, our scheme substantially
outperforms the multiple minimum degree algorithm (MMD), which is
the most commonly used method for computing fill reducing
orderings of a sparse matrix. Figure 2 shows the performance of
our multilevel scheme relative to the multilevel spectral
bisection (MSB) on graphs corresponding to some of the matrices
from Table 1. As the figure shows, the edge-cut produced by our
multilevel scheme is consistently better than that produced by
the MSB scheme.

3.5

3

2.5

1.5

0.5

Multilevel Nested uisaction vs Multiple Minimum Degree and ijjpactial Nested bisection

MMD SND MlND (baseline)

na
9> 9> ^> j& CJ
 .<?

f «

Figure 3. The number of operations required by spectral nested
dissection and multiple minimum degree relative to multilevel
nested dissection. Bars below 1 indicate that the multilevel
scheme produces worse orderings.

Figure 3 shows the quality of the fill-reducing ordering produced
by our multilevel scheme relative to the MMD scheme. From
Figure 3 we see that our multilevel scheme does consistently
better as the size of the matrices increases and as the matrices
become more unstructured. When all test matrices are considered,
MMD produces orderings that require a total of 702 billion
operations, whereas the orderings produced by our multilevel
scheme require only 293 billion operations. Thus, the entire
ensemble of matrices can be factored roughly 2.4 times faster if
ordered with our algorithm.

120

100

80

60

40

20

0

Huntime for 64-way partittion on 1 and 64 processors

UZ3 Serial Parallel

fr

Figure 4. The speedup of graph partition by using the parallel
algorithm.

Even though these multilevel algorithms are quite fast compared
with spectral methods, performing a multilevel partitioning in
parallel is desirable for the following reasons. With the recent
development of highly parallel formulations of sparse Cholesky
factorization algorithms, numeric factorization on parallel

computers can take much less time than the ordering step running
on a serial computer. In the context of iterative methods,
adaptive grid computations dynamically adjust the discretization
of the physical domain. Such adjustments change the grid and
thus require repartitioning of the graph. Being able to
perform the partition in parallel is essential for reducing the
overall run time of these types of applications. Furthermore,
the amount of memory on serial computers is not large enough to
allow the partitioning of graphs corresponding to large problems
that can now be solved on massively parallel computers and
workstation clusters. By performing graph partitioning in
parallel, the algorithm can take advantage of the significantly
higher amount of memory available in parallel computers.

We have recently developed a parallel formulation of the
multilevel graph partitioning algorithm. Our parallel algorithm
achieves a speedup of up to 56 on 128 processors for medium size
problems, further reducing its already moderate serial run time.
Figure 4 shows some of these results.

